
Acceleration of Optical Flow Computations on

Tightly-Coupled Processor Arrays

Éricles Rodrigues Sousa1, Alexandru Tanase1, Vahid Lari1, Frank Hannig1, Jürgen

Teich1, Johny Paul2, Walter Stechele2, Manfred Kröhnert3, and Tamin Asfour3

1Hardware/Software Co-Design, University of Erlangen-Nuremberg
2Institute for Integrated Systems, Technical University of Munich
3Institute for Anthropomatics, Karlsruhe Institute of Technology

1{ericles.sousa,alexandru-petru.tanase,vahid.lari, hannig, teich}@cs.fau.de
1{johny.paul, walter.stechele}@tum.de

3{manfred.kroehnert, tamim.asfour}@kit.edu

Abstract: Optical flow is widely used in many applications of portable mobile de-
vices and automotive embedded systems for the determination of motion of objects in
a visual scene. Also in robotics, it is used for motion detection, object segmentation,
time-to-contact information, focus of expansion calculations, robot navigation, and
automatic parking for vehicles. Similar to many other image processing algorithms,
optical flow processes pixel operations repeatedly over whole image frames. Thus, it
provides a high degree of fine-grained parallelism which can be efficiently exploited
on massively parallel processor arrays. In this context, we propose to accelerate the
computation of complex motion estimation vectors on programmable tightly-coupled
processor arrays, which offer a high flexibility enabled by coarse-grained reconfig-
uration capabilities. Novel is also that the degree of parallelism may be adapted to
the number of processors that are available to the application. Finally, we present an
implementation that is 18 times faster when compared to (a) an FPGA-based soft pro-
cessor implementation, and (b) may be adapted regarding different QoS requirements,
hence, being more flexible than a dedicated hardware implementation.

1 Introduction

Computer vision algorithms such as the optical flow [HS81] can give important informa-

tion about the spatial arrangement of objects in a scene and their movement. Due to the

ever growing demand for autonomous systems, the importance of computing the optical

flow in different embedded application domains (e. g., robotics, mobile phones, automo-

biles) is also increasing. For example, in [TBJ06], the importance of the optical flow for

maneuvering a robot was shown. Mobile phones were transformed into pointing devices

(using their video camera) with help of the optical flow in [BR05]. In [SBKJ07], Jae

Kyu Suhr and others determine an automatic parking system that is able to find an ap-

propriate free parking space based on an optical flow algorithm. Moreover, continuous

technology scaling has enabled embedded computer systems to integrate multiple proces-

sors and hardware accelerators on a single chip, also known as MPSoC. It can be foreseen

that in the year 2020 and beyond, the number of such computing units will exceed 1 000

processing elements on a single chip. Now, programming such a large number of process-

ing elements poses several challenges because centralized approaches are not expected

to scale [MJU+09]. Such an excessive increase in the amount of hardware resources on a

chip raises questions regarding the power consumption, specially in case of mobile devices

where the power budget is highly limited. Hence, there exists a trend toward specializing

the functionality in MPSoCs by employing application-specific or programmable hard-

ware accelerators. Programming different parts of such heterogeneous MPSoCs, even

more exacerbates the situation. Old school parallelization approaches do not match the

dynamic behavior of applications and the variable status and availability of resources in

large chip multiprocessors. These drawbacks can be seen in some of the architectures

available today, i. e., Tilera’s 64-core processor [WGH+07], 48-core Intel SCC proces-

sor [MRL+10], Xetal-II [AKC+08] (a SIMD processor with 320 processing elements),

and Ambric’s discontinued massively parallel processors with 336 RISC cores [NWC+09].

B. Hutchings et al. [HNW+09] described an optical flow streaming implementation on

Ambric AM204. However, due to the limitations in the I/O interfaces, the processor ele-

ments (PE) are stalled for more than 70% of the time, indicating under utilization. X. Lin et

al. [LHY+11] demonstrated the parallelization of a motion JPEG decoder on Tilera’s pro-

cessors by using threads with shared memory communication, which scales only partly.

In [DPFT11], the authors investigated the scalability of the Intel SCC [MRL+10]. They

demonstrated that applications which benefit from the massively parallel architecture must

have a high ratio of computations versus data volume. Image processing applications usu-

ally are on the other end of the spectrum, where only a few operations are performed on

each pixel and the same set of operations is needed to be repeated on millions of pixels,

generating a high data volume. Hence, image processing applications, when implemented

in a conventional manner (using multi-threading), cannot efficiently utilize the high paral-

lelism that is available in massively parallel processor arrays. [MJCP08] shows that visual

computing applications, like face detection and H.264 motion estimation also do not ben-

efit from multi-threading, as it leads to load imbalances. This work also demonstrates that

applications might fail to attain performance benefits on processor arrays if the available

memory bandwidth is not utilized efficiently. The applications running on the PEs ex-

change data through message passing or shared memory. But, due to the difficulties in

synchronizing data accesses through a shared memory, the most efficient way would be

message passing. Also, it is important to mention that massively parallel processor arrays

typically do not support cache coherency and the programmer has to handle it through

various locking mechanisms. However, if used extensively, locks may create a significant

overhead and the PEs will be stalled by waiting for locks for a significant part of actual

execution time. As a remedy, in this paper, we present an alternative implementation to

accelerate computationally intensive image processing algorithms, i. e., the optical flow

algorithm, on massively parallel processor arrays such as tightly-coupled processor arrays

(TCPAs) [THH+11].

Frequently, TCPAs are used as an accelerator in an MPSoC to speedup digital media and

signal processing applications. They consist of an N ×M mesh array of programmable

PEs, each having a VLIW structure. A simplified design of a TCPA with 24 processor el-

ements (PEs) is sketched in Figure 1. Only a limited amount of instruction memory and a

small register file is available in each PE, and the control overhead is kept as small as possi-

ble for a given application domain. For example, there is no support for handling interrupts

or multi-threading. Also, the PEs have no direct access to the main memory but data is

streaming from the surrounding buffers through the array and is processed from PE to PE.

These arrays, however, may achieve a very high energy efficiency [KGS+11, LMB+12]

R
e
c
o
n
fi
g
u
ra

b
le

 B
u
ff
e
rs

/F
IF

O
s

Reconfigurable Buffers/FIFOs

 PE PE

 PE PE

 PE PE

 PE PE

Address & Status Generation Logic

Reconfigurable Buffers/FIFOs

R
e
c
o
n
fi
g
u
ra

b
le

 B
u
ff
e
rs

/F
IF

O
s

MPSoC On-Chip Interconnect

Controller

 PE PE PE PE

 PE PE PE PE

 PE PE PE PE

 PE PE PE PE

Figure 1: Tightly-coupled processor array that may be used as an accelerator in an MPSoC. The
highlighted rectangular areas are occupied by three applications that may run simultaneously.

and thus are well suited for streaming applications in embedded portable devices. TC-

PAs rely on fine-grained scheduling of loop iterations and do not require each tile to be

executed atomically, thus, lifting the corresponding constraint that is imposed by other

available massively parallel architectures (e. g., GPUs, multicore architectures), and giv-

ing more room for optimized mapping and code generation. This fact is the major differ-

ence when compared to the execution of multi-threaded applications in multicore archi-

tectures or of microthreads in graphics processors, where threads are executing atomically

the dispatched tiles. Moreover, no thread initialization and synchronization overhead is

introduced, which directly leads to smaller overall execution latencies. Instead, tightly-

coupled processor arrays may exploit the direct PE to PE communication, where the data

is streaming from the surrounding buffers through the array, thus, lifting the above men-

tioned drawbacks while benefiting from both instruction as well as loop-level parallelism

and enabling zero-overhead program control flow results in ultra-fast execution of appli-

cations [KSHT09]. To achieve both the necessary processing speed as well as low power

consumption, algorithms or parts of them need to be accelerated on dedicated or pro-

grammable massively parallel architectures. This paper considers TCPA architectures for

accelerating image processing applications with 2D sliding windows such as optical flow

and performs an evaluation by comparing the results with other state-of-the-art implemen-

tations. Novel to our approach is that the application may be implemented such that the

execution speed may adapt to a varying number of available and employed processing

elements, respectively. On the other hand, in order to obtain a certain processing speed,

a certain number of processing elements must be available. This flexibility as well as

self-organizing properties are exploited, stemming from a new resource-aware computing

paradigm called Invasive Computing [THH+11].

Section 2 presents our approach, i. e., how to map the different parts of optical flow com-

putation on TCPAs. Results are discussed in Section 3, and finally, Section 4 concludes.

2 Optical Flow Computation on TCPA

A TCPA as shown Figure 1 consists of a two-dimensional set of processing elements (PE)

that may be customized at synthesis-time with respect to many parameters such as types

and number of functional units for arithmetic, logic, branching and logical operations.

The interconnection network consists of point-to-point connections between neighbor PEs

that are also parameterizable using interconnection wrappers, each of them surrounds a

PE. Using this wrapper, different interconnection topologies can be configured at run-time

by changing the value of select registers in the interconnection wrapper multiplexers. As

the processing elements are tightly-coupled, they do not need direct access to the global

memory. The data transfers to the array is performed through the PEs at the borders,

which are connected to the banks of surrounding memory buffers. These buffers could

be implemented as simple FIFO buffers or RAM-based addressable memory banks. The

memory architecture and technique used to fill the pixel data into the I/O buffers in Figure 1

is beyond the scope of this paper and it is explained in detail in [LHT09].

Due to the aforementioned arguments, massively parallel processor arrays are well suited

for accelerating compute-intensive vision algorithms such as optical flow. In the following,

three subsequent compute stages of the optical flow algorithm are outlined. In the first

stage, an image smoothing is performed as described in Section 2.1. The second stage is

the census signature generation (see Section 2.2) where a unique signature is computed

for each pixel in a frame based on its neighboring pixels. The third stage operates as

follows: When two consecutive signature images are available, the signature of one pixel

in frame t is compared with the signatures of all pixels in a certain neighborhood of frame

t+1, i. e., a possible matching is determined, which computes a corresponding flow vector

(see Section 2.3). Since such a pixel-to-pixel signature comparison is a computationally

intensive task, the search region is limited to a small region in frame t+1 located around a

candidate pixel from frame t. The wider the search region, the longer the flow vector might

be, and the faster the motion that can be detected. A wider search region also helps to

reduce the number of false vectors. But, this also leads to higher computing requirements

as more signatures need to be compared.

Based on the above application requirements, we outline next how each stage may be

mapped to a w× d region of a TCPA array, where w is the window size and d is called

depth and denotes the number of consecutive pixel values and moving window operations,

respectively. We have the possibility to allocate more PEs and increase the value of d in

order to decrease the execution time. In case of insufficient resources, the application can

decide whether to reduce the window size w so to avoid a frame drop. The upcoming

sections explain this scalable application mapping for all three stages of the optical flow

and demonstrate the variation in computation time with varying resources on a TCPA.

2.1 Image Filtering

The optical flow computation starts with a simple image filtering in order to remove noises
in the input image. In the algorithm a 2D window of size w×w slides over the complete
image. The window is placed centered at each pixel in the image and each pixel is mod-
ified based on its neighboring pixels and the weights as in Eq. (1), where P(x,y) is the
pixel intensity at location (x,y) in a frame of size U ×V , W (x1,y1) is the corresponding
coefficient weight and w is the window size.

w

w

RAMRAM

RAMRAM

RAMRAM

window 1

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

PE

PE

PE

(a)

window 1 window 2 window 3

RAMRAM

RAMRAM

RAMRAM

RAMRAM RAMRAM RAMRAM

RAMRAM RAMRAM RAMRAM
Outputs

RAMRAM

RAMRAM

RAMRAM

w w

w

PE PE PE

PE PE PE

PEPE PE

w

(b)

Figure 2: Basic image filtering in a TCPA for a w ×w window, where w = 3 in (a). Processing
multiple 3 windows simultaneously in (b)

Ps(x,y) =
∑
⌊w/2⌋
x1=−⌊w/2⌋ ∑

⌊w/2⌋
y1=−⌊w/2⌋

P(x+x1,y+y1) ·W (x1,y1)

∑
⌊w/2⌋
x1=−⌊w/2⌋ ∑

⌊w/2⌋
y1=−⌊w/2⌋W (x1,y1)

(1)

forall input pixels P(x,y) : ⌊w/2⌋ ≤ x < U − ⌊w/2⌋ ∧ ⌊w/2⌋ ≤ y < V − ⌊w/2⌋. A

careful inspection shows that for a sliding window approach each window shares its pixels

with the neighboring window. Thus, if multiple neighboring windows/pixels are processed

simultaneously, this may lead to a) much better utilization of memory bandwidth. To pro-

cess one pixel for a window size of 3× 3, we map the above computation onto a set of 3

PEs as shown in Figure 2(a). Each PE processes one row of the window, so together they

can process one complete window in w time steps. Moreover, to exploit the parallelism

of TCPAs, multiple windows (corresponding to multiple pixels) can be processed simul-

taneously. For example, another set of 3 PEs, if available, can process the neighboring

window by reusing the data read by the first set of PEs, through continuous data exchange

over the dedicated interconnect as shown in Figure 2(b). This helps to reduce the overall

execution time without increasing the memory bandwidth requirements. For example, for

an image filtering application processing a 5×5 window, the application can be optimally

mapped to a 5×5 PE region. If a sufficient number of PEs is not available, the application

can decide to choose the biggest available configuration, e. g., in case only an array of size

3× 2 is available, the application can decide to filter only using a 3× 3 window instead

and process only 2 windows simultaneously. This gives the application an opportunity to

scale its requirements according to the amount of available resources. Eq. (2) can be used

to compute the execution time in cycles/pixel (CPP) for any array configuration of size

w× d:

CPP(w,d) =
(Cp ·w)+(d −1)Cd +Cconst

d
(2)

In Eq. (2), Cp is the number of clock cycles to process the pixels of one row, d denotes the

number of windows (pixels) that are processed simultaneously. Cd denotes the number of

cycles needed for one PE to skip the pixel which does not belong to its window, because

each PE of one row receives the same input values, and Cconst is the time to reinitialize

Ps(x,y) after processing one window and move on to the next. Note that the presented

application mapping can be applied to many other sliding window image filters like edge

detection, Harris Corner detection, morphological operations (e. g., dilation, erosion).

P- P+ P

S 2 2 22 2
>

>

=

>

=

X

<

>

>

<

<

=

=

<

=

<

=

20 1

Figure 3: Signature generation technique

2.2 Census Signature Generation

After image filtering, the next step is to generate census signatures from the filtered image.
The technique described in [CLJS09] is briefly explained in Figure 3. A unique signature
ξ (i, j) is calculated for each pixel in the frame by comparing its value (marked by ’x’) with
its neighboring pixels located within its window region. The result of each comparison
can be presented by two bits and is calculated using a deviation ε as shown in Figure 3.
Unlike window-based image filtering, only a subset of the neighboring pixels is required
for signature generation. Those pixels are marked by the symbols (<,=,>) that indicate
the relation of the pixel (x,y) with its neighboring at a particular location (x+ i,y+ j) as
visually described by the 16-stencil in Figure 3. As described by Eq. (3), when a neighbor
pixel is bigger than P(x,y)+ε , 2 is output. However, if the neighbor is less than P(x,y)−ε ,
an 1 as output is assumed. Otherwise, when the neighbor pixel is between both values, a
0 is output. Next, the 16 computations of ξ are concatenated to one signature S(x,y) (see
Eq. (4)).

ξk =







2, i f P(x+ ik,y+ jk)> P(x,y)+ ε
1, i f P(x+ ik,y+ jk)< P(x,y)− ε ∀ 1 ≤ k ≤ 16

0, else

(3)

S(x,y) = (ξ1,ξ2, . . . ,ξ16) (4)

From Figure 3, it becomes clear that in total five columns have to process pixels. Hence, in
the TCPA implementation, we allocate five PEs per column for computing the signature.
Moreover, the signature generation stage of the algorithm also involves a sliding window
and hence, the processing can be accelerated using multiple columns of PEs as shown in
Figure 4(a). Similar to the approach adopted for image filtering, the results are propagated
through the PEs to the buffers located at the borders of the array. A unique signature is thus
generated for each smoothed pixel in the input frame, forming a signature image and this
is used for computing the flow vectors as explained in the next section. The computation
time in cycles/pixel can be calculated using Eq. (5), where Cs is number of cycles required
to move a result from one PE to its neighbor over the dedicated interconnect and d, as
mentioned previously, is the number of windows that are processed simultaneously.

CPP(w,d) =
(Cp ·w)+(w−1)Cs +Cconst

d
(5)

2.3 Flow Vector Generation

The final stage of the optical flow computation generates flow vectors representing the

relative motion between the camera and the objects in a frame. For vector generation, two

3 adjacent windows from

census image (t)

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM RAMRAM RAMRAM

RAMRAM RAMRAM RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

window 1 window 2 window 3

Outputs

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE

PEPE

PE PE

w

w

w

w

(a)

Uni�ue

match?=

Add Vector

Discard Vector

C����� ���nature Y

N

S�	
�t�
� ���	� �t�1)

..

S�	
�t�
� ��age (t)

.

1�11���1�11��1�1

1�11���1�11��1�1

1�111��1�111�1�1
1��11�11�11��1�1

1�11���1211�1121

��11���1�11��1�1
1�11���1�11��1�1

��2

w

w

w

w
(b)

Figure 4: Mapping scheme for signature generation with a considered w×w window (w = 9) in (a).
Vector generation for a w×w window (w = 15) is shown in (b)

consecutive signature images are required, e. g., from frames t −1 and t. As explained be-

fore, a signature represents the relation of the current pixel with its neighborhood. There-

fore, if the signature of a pixel St−1(x,y) matches with the signature of the same or another

pixel St(x
′,y′) in the next consecutive frame, then it is assumed that the pixel has moved

from its location (x,y) in frame t − 1 to the new location (x′,y′) in frame t. To understand

this process, consider a window of size 15×15 centered at coordinates (x,y) in the signa-

ture image, i. e., St(x,y). Now, the signature at location (x,y) in frame t − 1 is compared

with each signature within the considered window in the next frame t. This is explained

using Figure 4(b) and the following pseudo algorithm.

If a unique match (m(x,y) = 1) was found, F(x,y) represents the flow vector (i. e., move-

ment of pixel P(x,y)). This operation is repeated for each signature in frame t −1, using a

sliding window.

m(x,y) = 0

F(x,y) = (0,0)

for u =−7 . . .7

for v =−7 . . .7

if (St−1(x,y) == St (x+u,y+v)) then

m(x,y) = m(x,y)+1

F(x,y) = (u,v)

endif

endfor

endfor

As one PE may only process a part of the complete image, the results are not final and have

to be compared with results of other PEs for multiple match condition. Each PE performs a

signature matching between the central signature and the signatures from the correspond-

ing row within the window and outputs the result in the form of (x,y) coordinates and

match count to the neighboring PE. The individual results are then verified if there was a

unique, a multiple or no-match correspondence. This stage uses a mapping scheme similar

to the signature generation and hence, the computation time (cycles-per-pixel) can be cal-

culated equally using Eq. (5). In case of insufficient resources, the application may decide

Image Signature Vector

Filter Generation Generation

Configuration size (bits) 1 344 3 360 3 232

Configuration latency (ns) 840 2 100 2 020

Table 1: Configuration bit stream sizes (bits) for the three parts of the optical flow as well as the
configuration latency Ccon f , where a 32-bit bus is used to load each configuration to the PEs (50
MHz clock frequency).

Architecture Hardware cost Performance

slice regs LUTs BRAMs (s)

FPGA 26 114 32 683 81 0.048

5×5 TCPA 35 707 105 799 85 0.427

LEON3 28 355 42 210 65 7.589

Table 2: Hardware cost and performance comparison (time in seconds for fully processing one image
frame) for the optical flow application implementation on a LEON3, 5×5 TCPA, and a custom FPGA
implementation. All architectures operate at 50 MHz clock frequency and have been prototyped on
a Xilinx Virtex-5 FPGA.

again to reduce the window size w so to avoid any frame drops.

3 Results

Assuming the computation according to a VGA image resolution (640×480 pixels), this

section presents results as overall performance and scalability of the optical flow applica-

tion when mapped onto TCPAs of different sizes. Here, the metric cycles per pixel (CPP)

is considered for comparison representing the number of clock cycles needed to compute

one output pixel. Let Ccon f denotes the time to configure the TCPA interconnect structure

and to load the executable code into the PEs. The values in Table 1 were obtained using a

cycle accurate simulator published in [KKHT07] and the graphs in Figure 5 were plotted

using Eqs. (2) and (5) for a fixed window size of w = 3 in the case of image filtering, w = 5

for signature generation, and w = 15 for vector generation.

Figure 5 indicates the variation of the CPP value based on the degree of parallelism (d)

for the image filtering, and signature and vector generation stages of the optical flow al-

gorithm. According to our explanation in Section 2, d denotes the number of PE columns

that are employed to compute the application (the more PE columns we use, higher the

degree of parallelism). The graph clearly shows that the CPP decreases with increasing d.

Next, we compare the execution time of our approach with the FPGA-based implementa-

tion as well as a pure software implementation on a soft RISC processor (LEON3). Table 2

shows the results of this performance comparison as well as hardware cost comparison.

The hardware costs are reported for a Xilinx Virtex5 synthesis and the performance is re-

ported in terms of the overall application computation time per frame. For the TCPA archi-

tecture, we configured a 5×5 array in order to show the achievable performance of TCPAs,

having a hardware cost close to one LEON3 core. In order to exploit the full processing

capacity of the TCPA, each part of the application is assumed to allocate the whole array.

This is enabled by fast coarse-grained reconfiguration capabilities of TCPAs, where con-

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15

IMF

�G

�G

�egree of parall�lism (d)

(C
P
P

)
C
y
c
le
s
/p
ix
e
l

Figure 5: The obtained cycles/pixel (CPP) in dependence of the degree of parallelism d (number of
simultaneous window computations) for a window size of w = 3 in the case of image filtering, w = 5
for signature generation, and w = 15 for vector generation. (IMF: image filtering, SG: signature
generation, VG: vector generation)

text switches of the array are performed at the nanosecond scale (see Table 1). Although

using more resources than the FPGA-based implementation and consequently achieving

lower performance, TCPA architectures have the great advantage to be programmable and

able to adapt itself regarding to different QoS requirements. The LEON3 is configured as

follows: 4 KB on-chip RAM, 32 KB data cache, and 16 KB instruction cache. Moreover,

in our evaluation, we consider only the pure execution time of the application by assuming

the input data already being loaded into the data cache of the LEON3 and input buffers

of the TCPA, respectively. Therefore, the timing overhead of the communication between

peripherals, bus, and the memory access are ignored in each case. In terms of execution

time, the LEON3 needs 1 244 clock cycles to generate one signature and to compute one

matching. Consequently, it takes approximately 7.6 seconds to process one VGA frame,

when running at 50 MHz. This implementation would therefore provide no more than

0.13 frames per second (fps). At the same clock frequency, the 5× 5 TCPA configuration

achieves approximately 2.35 fps. However, the size of the processor array could be fur-

ther increased to increase the performance according to Figure 5. The total area needed

to implement the 5×5 TCPA, i. e., 25 processing elements is practically equal to the area

requirements of a single LEON3. But, the overall execution time achieved by our solution

outperforms that of the LEON3 by a factor of 18, and even faster than the Ambric MPPA

implementation [HNW+09], where in case of Ambric the system operates at 300 MHz

frequency and processes 320×240 images and obtains 37 fps performance. With the same

system setup, the TCPA would reach a frame rate of 55.2 fps.

4 Conclusion

This paper presents the benefits of implementing computationally intensive image algo-

rithms, i. e., the optical flow on programmable massively parallel processor arrays such as

tightly-coupled processor arrays (TCPAs). We demonstrated that TCPAs do not only pro-

vide scalable performance for sliding window based algorithms such as the optical flow,

but also benefit from very fast reconfiguration in order to compute the different algorithmic

parts in a time-multiplexed manner. The results presented a linear performance improve-

ment in terms of number of available processor elements for different parts of the optical

flow application. Moreover, our TCPA-based solution was compared against a software-

based implementation on a LEON3 (single core) as well as a known dedicated hardware

implementation. Notably, the 5×5 TCPA variant does not need substantially more logic

resources on an FPGA than an implementation based on a single LEON3 core. How-

ever, the TPCA implementation may offer an 18 times higher frame rate than the LEON3

implementation.

Acknowledgment
This work was supported by the German Research Foundation (DFG) as part of the Tran-
sregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89).

References

[AKC+08] A.A. Abbo, R.P. Kleihorst, V. Choudhary, et al. Xetal-II: A 107 GOPS, 600 mW Massively Parallel
Processor for Video Scene Analysis. IEEE Journal of Solid-State Circuits, 43(1):192–201, 2008.

[BR05] Rafael Ballagas and Michael Rohs. Mobile Phones as Pointing Devices. In Workshop on Pervasive

Mobile Interaction Devices (PERMID 2005), pages 27–30, 2005.

[CLJS09] Christopher Claus, Andreas Laika, Lei Jia, and Walter Stechele. High Performance FPGA-based
Optical Flow Calculation Using the Census Transformation. IEEE Intelligent Vehicle Symposium,
June 2009.

[DPFT11] A. Diavastos, P. Petrides, G. Falcao, and P. Trancoso. Exploiting Scalability on the Intel SCC Pro-
cessor. In Advanced Computer Architecture and Compilation for High-Performance and Embedded

Systems, pages 253–256, 2011.

[HNW+09] B. Hutchings, B. Nelson, S. West, et al. Optical Flow on the Ambric Massively Parallel Processor
Array. In 17th IEEE Symp. on Field Programmable Custom Computing Machines. IEEE, 2009.

[HS81] B. Horn and B. Schunk. Determining Optical Flow. Artificial Intelligence, 17(1):185–203, 1981.

[KGS+11] Dmitrij Kissler, Daniel Gran, Zoran A. Salcic, Frank Hannig, and Jürgen Teich. Scalable Many-
Domain Power Gating in Coarse-grained Reconfigurable Processor Arrays. IEEE Embedded Sys-
tems Letters, 3(2):58–61, 2011.

[KKHT07] Alexey Kupriyanov, Dmitrij Kissler, Frank Hannig, and Jürgen Teich. Efficient Event-driven Sim-
ulation of Parallel Processor Architectures. In Proc. of the 10th Int. Workshop on Software and
Compilers for Embedded Systems (SCOPES), pages 71–80, 2007.

[KSHT09] Dmitrij Kissler, Andreas Strawetz, Frank Hannig, and Jürgen Teich. Power-efficient Reconfigura-
tion Control in Coarse-grained Dynamically Reconfigurable Architectures. Journal of Low Power
Electronics, 5:96–105, 2009.

[LHT09] Vahid Lari, Frank Hannig, and Jürgen Teich. System Integration of Tightly-Coupled Reconfigurable
Processor Arrays and Evaluation of Buffer Size Effects on Their Performance. In Proceedings of
the 4th International Symposium on Embedded Multicore Systems-on-Chip, pages 528–534, 2009.

[LHY+11] X.Y. Lin, C.Y. Huang, P.M. Yang, T.W. Lung, S.Y. Tseng, and Y.C. Chung. Parallelization of
motion JPEG decoder on TILE64 many-core platform. Methods and Tools of Parallel Programming
Multicomputers, pages 59–68, 2011.

[LMB+12] Vahid Lari, Shravan Muddasani, Srinivas Boppu, Frank Hannig, Moritz Schmid, and Jürgen Teich.
Hierarchical Power Management for Adaptive Tightly-Coupled Processor Arrays. ACM Trans. on
Design Automation of Electronic Systems, 18(1), 2012.

[MJCP08] A. Mahesri, D. Johnson, N. Crago, and S.J. Patel. Tradeoffs in designing accelerator architectures
for visual computing. In Proceedings of the 41st annual IEEE/ACM International Symposium on
Microarchitecture, pages 164–175, 2008.

[MJU+09] Mojtaba Mehrara, Thoma B. Jablin, Dan Upton, David I. August, Kim Hazelwood, and Scott
Mahlke. Compilation Strategies and Challenges for Multicore Signal Processing. IEEE Signal
Processing Magazine, 26(6):55–63, November 2009.

[MRL+10] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal,
N. Borkar, G. Ruhl, et al. The 48-core SCC processor: the programmer’s view. In Proceedings

of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–11, 2010.

[NWC+09] B. Nelson, S. West, R. Curtis, et al. Comparing fine-grained performance on the Ambric MPPA
against an FPGA. In Int. Conf. on Field Programmable Logic and Applications (FPL). IEEE, 2009.

[SBKJ07] Jae Kyu Suhr, Kwanghyuk Bae, Jaihie Kim, and Ho Gi Jung. Free Parking Space Detection Using
Optical Flow-based Euclidean 3D Reconstruction, 2007.

[TBJ06] Valerij Tchernykh, Martin Beck, and Klaus Janschek. An Embedded Optical Flow Processor for
Visual Navigation using Optical Correlator Technology. In IEEE/RSJ Int. Conference on Intelligent

Robots and Systems, pages 67–72, October 2006.

[THH+11] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-
Preikschat, and Gregor Snelting. Multiprocessor System-on-Chip: Hardware Design and Tool In-

tegration, chapter 11, Invasive Computing: An Overview, pages 241–268. Springer, 2011.

[WGH+07] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C. Miao,
J.F. Brown III, and A. Agarwal. On-Chip Interconnection Architecture of the Tile Processor. IEEE

Micro, 27(5):15–31, September 2007.

