
A Modular and Distributed Embedded Control
Architecture for Humanoid Robots

D.N. Ly, K. Regenstein, T. Asfour and R. Dillmann
Research Center for Information Technologies (FZI)
Haid-und-Neu-Str. 14, D-76131 Karlsruhe, Germany

http://www.fzi.de
ly@fzi.de, regenstein@fzi.de, asfour@ira.uka.de, dillmann@ira.uka.de

Abstract— In this paper we present a modular and dis-
tributed control architecture in order to achieve natural in-
teraction and mobile manipulation task goals for a humanoid
robot. We propose a hierarchically organized architecture
with three levels and introduce the mapping of the functional
features in this architecture into hardware and software
modules. We also describe different functional features which
have been realized and integrated into the whole control
architecture.

I. INTRODUCTION

The term humanoid is commonly associated with the
idea of robots whose physical appearance is similar to
that of the human body. Beyond a physical resemblance,
humanoid robots must resemble humans in their ways of
acting in the world, of reasoning and communicating about
the world.

Our current research interest is the development of a
control architecture to achieve manipulation task goals for a
humanoid robot. The control architecture must provide the
possibility to integrate the motor, perception and cognition
components necessary for natural multi-modal human-
humanoid interaction and human-humanoid cooperation. In
particular, we address the programming and coordinated
execution of manipulation tasks in a household environ-
ment. Therefore, it is an important issue to coordinate the
multiple subsystems of a humanoid robot in carrying out
tasks in dynamic and unstructured environments.

The design of humanoid robots requires coordinated
and integrated research efforts that span a wide range of
disciplines such as learning theory, control theory, arti-
ficial intelligence, human-machine-interaction, mechatron-
ics, perception (both computational and psychological) and
even biomechanics and computational neuroscience. These
fields have usually been explored independently, leading to
significant results within each discipline. The integration
of these disciplines for the building of adaptive humanoid
robots requires enormous collaborative resources that can
be achieved only through a long-term, multidisciplinary
research projects, as the German humanoid research project
(SFB 588) initiated by the German Research Foundation
(Deutsche Forschungsgemeinschaft: DFG). In the frame-
work of the project we are working on the building and
integration of humanoid robot components.

In this paper we present our ongoing work on the

Fig. 1. The humanoid robot ARMAR

realization of a humanoid robot platform for household en-
vironments. In particular, we address the programming and
coordinated execution of manipulation tasks in a house-
hold environment. Therefore, it is an important issue to
coordinate the multiple subsystems of a humanoid robot in
carrying out tasks in dynamic unstructured environments.

The paper is organized as follows. In section II a short
description of the humanoid robot ARMAR is given. Sec-
tion III describes the proposed control architecture includ-
ing its hardware and software modules. The implemented
features are presented in section IV. Finally, section V
summarizes the results and concludes the paper.

II. THE HUMANOID ROBOT ARMAR

The humanoid robot ARMAR (see figure 1) has 23 me-
chanical degrees-of-freedom (DOF). From the kinematics

IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (IROS 2004), Japan, Sep. 28 - Oct. 2, 2004 



SubtaskSubtaskSubtaskSubtaskSubtask

Task (complex skill)

left arm
controller controller controller controller controller

plattformtorsoheadright armleft arm

θ2

θ4

TCP

θ3

θ6

θ5
θ7

θ1

φ1

φ2

φ3

ψ1

ψ2

right arm head torso plattform

Task execution

Commands

Feedback

Interactive
User
Interface

Task planning

Task coordination

Global models
- environment,
- Object database,
- Skills

Active models

- basic skills
- Object
- Active scene

Fig. 2. The proposed control architecture with three levels: task planning, task coordination and task execution

control point of view, the robot consists of five subsystems:
Head, left arm, right arm, torso and a mobile platform. The
upper body of ARMAR has been designed to be modular
and light-weight while retaining similar size and proportion
as an average person. The head has 2 DOFs arranged as pan
and tilt and is equipped with a stereo camera system and a
stereo microphone system. Each of the arms has 7 DOFs
and is equipped with 6 DOFs force torque sensors [12] on
the wrist. The current mobile base of ARMAR consists of a
differential wheel pair and two passive supporting wheels.
It is equipped with front and rear laser scanner (Sick LMS).
Furthermore, it hosts the power supply and the main part
of the computer network.

III. CONTROL ARCHITECTURE

In this section, we introduce our control architecture.
First, we summerize the design criteria. Second, we in-
troduce our designed and hierarchically organized control
architecture. Third, we describe the hardware and software
modules. The design criteria can be summarized as follows:

• Flexibility and modularity to cope with various tasks
and to allow the addition of further tasks and hardware

and software modules in a simple manner. This is a
very important feature for the process of integration.

• Real-time performance to allow a prompt respond to
varying environments and exceptions which can occur
during the task execution.

We propose a hierarchically organized control system
for our humanoid robot with three levels to handle the
complexity of the robot. A given task is decomposed
into several subtasks, representing the sequence of actions
the subsystems of the humanoid robot must carry out
to accomplish the task goal. The coordinated execution
of a task requires the scheduling of the subtasks and
their synchronization with logical conditions, external and
internal events. Figure 2 shows the block diagram of the
control architecture with three levels:

• The task planning level specifies the subtasks for the
multiple subsystems of the robot. Those could be
derived from the task description autonomously or
interactively by a human operator. Furthermore, the
necessary subsystem controller are selected.

• The task coordination level generates sequen-



tial/parallel primitive actions for the execution level in
order to achieve the given task goal. The subtasks are
established by the task planning level. The execution
of the subtasks in an appropriate schedule can be mod-
ified/reorganized by an operator using an interactive
user interface.

• The task execution level is characterized by con-
trol theory to execute specified sensory-motor control
commands. This level uses task specific local models
of the environment and objects, which represent the
active scene. In the following we refer to those models
as active models.

The active models are first initialized by the global
models and can be modified and enhanced on the basis
of the progress of the task execution. Internal system
events and execution errors are detected from local sensor
data. These events/errors are used as feedback for the task
coordination level in order to take appropriate measures.
For example, a new alternative execution plan can be
generated to react to internal events of the robot subsystems
or to environmental stimuli. To achieve a coordinated
execution of tasks, a mechanism for the synchronization of
actions of the different subsystems of the robot allowing
a deterministic switch between sequential/parallel actions
was developed [2]. For this purpose, condition-event Petri
nets (C/E Petri net) are used to efficiently represent both
control and data flow within one formalism.

A. Computer Architecture

The previous computer architecture in ARMAR con-
sisted of an embedded PC and a number of C167 min-
imodules. These modules were connected to the PC via
CAN-Bus. The C167 minimodules acquired the revolution
speed of the motor and generated PWM-signals for motor
control. As only one CAN-Bus is used in this architecture,
the bandwidth of the CAN-Bus has turned out to be a
bottleneck for transmission of sensor values and actuator
commands. Another problem was the limited cycle time
that could be achieved using the C167 minimodule, which
is not sufficient for a smooth control of the robot. Re-
cently the computer system in ARMAR was enhanced. At

Fig. 3. Hardware architecture in ARMAR

Fig. 4. The new Hardware Architecture

the moment the following components are integrated into
ARMAR

• 2 × 1 GHz embedded PC for upperbody motion con-
trol, trajectory generation platform navigation, acous-
tic localisation and speech.

• 1 × 1.7 GHz Laptop for the visual tracking.
• 1 × 700 MHz PC/104 for hybrid position and force

control for the dual-arm system.
The current computer architecture consists of several em-
bedded PCs and C167 minimodules (see figure 3). The
PCs are connected via ethernet among each other and the
connection to the C167 minimodules is established via
CAN-Bus sytem. In order overcome bandwidth problems
we have distributed the C167 minimodules onto two CAN-
Buss.

A new computer architecture [7] was developed to
resemble the proposed structure of the control architecture.
The computer architecture (see figure 4) is structured into
the three following levels:

• task planning level
• synchronization and coordination level
• sensor-actor level

The task planning level is responsible for the scheduling
of tasks and management of resources and skills. Complex
tasks are divided into subtasks that are transferred to the
synchronization level.

The synchronization level coordinates several subsys-
tems of the humanoid robot like arms, head, torso and
platform. On this level mainly embedded PCs like PC/104
systems will be used. The interconnection between the



components of the synchronization level will be established
by a broadband bus-system like firewire.

At the sensor-actor level the servo control of the motors
is done by monitoring the revolution speed of the motor,
the angle of the axis and the torque applied to the axis.
For this task the Universal Controller Module (UCoM) was
developed. The UCoM is a DSP-FPGA-based device which
communicates with the embedded PCs via CAN-Bus. By
using a combination of a DSP and a FPGA a high flexibility
is achieved. The DSP is dedicated for calculations and data
processing whereas the FPGA offers the felxiblity and the
hardware acceleration for special functionalities. In this
case the FPGA’s main objective is to take workload from
otherwise time-consuming computation on the DSP.

B. Software Environment

• Operating System: The computers of the motion
control are running under Linux, kernel 2.4.20 with
the Real Time Application Interface RTAI 24.1.11.
Our on board vision system is running under Windows
XP. They communicate over TCP/IP and over sockets
with the vision systen.

• Implementation Framework: For the implementa-
tion of the control architecture we have used the
framework MCA version 2.3 ([11], [13]). It provides
a standardized module framework with unified in-
terfaces. The modules can be easily connected into
groups to form more complex functionality. These
modules and groups can be executed under linux,
RTAI-Linux and Windows and communicate beyond
operating system borders. Moreover, the graphical
debugging tool MCAadmin/MCAbrowser which can
be connected via TCP/IP to the MCA processes
visualizes the connection structure of the modules
and groups and provides access to the interfaces at
runtime. The MCAGUI provides a graphical user
interface with various input and output entities.

IV. MOTION CONTROL METHODS

In this section we prensent several motion control meth-
ods which have been already implemented in order to cope
with our task goal, i.e. natural interaction and performing
manipulation tasks in a kitchen scenario.

A. Visual person tracking and auditory tracking

In order to make the interaction with the robot easier
and more reliable, we integrated the algorithms, which has
been originally developed in [3] for the visual perception
of the user into the control system of our robot. The 3D-
positions of the user’s head and hands are mapped into
joint angles of the robot head and arms. For the mapping
of the hand positions into a robot arm postures, we use
the method presented in [1] in order to generate human-
like arm postures. Furthermore, an acoustic localisation
algorithm using a stereo microphone system, which was
developed in [4], is also integrated. Once the head and
hands of a person has been detected, the humanoid robot
mimics the head and hand motion of the person. When

the robot loses the person, the attention of the robot is
regained through the acoustic localisation. Our experiments
indicate a robust visual and acoustic tracking of a person
even when the head is moving. Tracking sessions were
running continuously over 2 hours.

B. Arm Motion Control

The execution of single arm manipulation tasks is
provided by different inverse kinematics algorithms [1].
This is necessary because most manipulation tasks are
specified in terms of the object trajectories. Because of the
kinematics redundancy of the 7-DOF-arms of ARMAR, an
infinite number of joint angle trajectories leads to the same
end-effector trajectory. We use the redundancy to avoid
mechanical joint limits and to minimize the reconfiguration
of the arm. In Addition, we presented in [1] a method for
the generation of kinematically human-like manipulation
motions. The method uses a representation for the arm
posture suggested in the neurophysiology in order to de-
termine the joint angles of the shoulder and elbow θ1, θ2,
θ3, and θ4 of the robot arm, which specify the position of
the wrist. The remaining joints angles θ5, θ6 and θ7 are
used to determine the exact position and orientation of the
end-effector.

C. Self-Collision Avoidance

The detecting and avoiding self-collisions is essential in
the case of multiple arm robots, which has to safley operate
in household environments. For the self-collision avoidance
of the dual-arm system of our humanoid robot, we have
implemented a simple 3D-collision avoidance method. For
this purpose, we modeled all upperbody parts of the robot
(arms, hands and torso) by bounding cylinders terminated
with semispheres. The setup of the bounding cylinders
have been created as follows: Each arm consists of three
cylinders where the one covers the hand, one the lower arm

Fig. 5. Collision hulls of Armar: Each arm consists of three cylinders
whereas the torso is modeled as a separate cylinder



and one the upper arm. The Torso is modeled as a separate
cylinder (see figure 5).

Due to the mechanical joint limits only 26 out of 36
possible collisions have to be verified. On an AMD Athlon
1GHz we have reached an average computation time of
2.2 milliseconds for the upper body. Unlike [8] where
the convex hull of polyhedra are used, our approach with
simpler geometric shapes does not require a very high
demand of computing power. Furthermore, the method can
be applied to collision avoidance between the robot and
external obstacles.

D. Locomotion Control

The locomotion control is designed to provide multiple
driving strategies under different situations. On the one
hand we want the platform to find its way from one location
to another within a household environment and to avoid
collisions autonomously. On the other hand, the control
over the motion path and speed needs to be passed on
to other entities of the robot such as the module for the
coordination of the whole body motion.

For satisfying the requirements mentioned above, the
platform basically needs to know where it is. This is the
task of the navigation done by an odometry and a pose
correction. Based on the pose information a path compu-
tation can determine a path from one place to another.
Then the planned path can be observed and checked by
the path observation. It is responsible for setting a new
target if stopovers have been reached on the path. The path
segment to these target has to be observed by the collision
avoidance. It does a local replanning of the path when
obstacles occurr on the segment ahead. Finally, a spline
driving module controls the execution of the motion on the
path by generating desired values for a kinematics module
which transforms the control values to wheel speeds for
the motor controllers. Beside these autonomous control
modules, a manual control for the purpose of placing and
maintaining the platform has been considered very useful.

According to this idea the overall structure which we
have implemented for the control of the platform currently
consists of six major modules:

• manual driving
• navigation by odometry and scanner based pose cor-

rection
• graph module
• collision avoidance
• spline path driving
• kinemtics
• motor control
In the remainder of this section a more detailed descrip-

tion of the above mentioned modules is given.
We begin with the directly user controlled branch. The

manual driving provides manual control of the platform
with a joystick for the ease of handling when the robot is
not running autonomously and needs to be moved. For this
purpose the joystick’s x and y-axis values are mapped to
radius and speed respectively for the kinematics module.

Fig. 6. Architecture of the platform control

On the autonomous branch the fundamental modules are
the odometry and the pose correction. They are working
closely together. Due to slip and limited precision the
odometry would lose the vehicle’s pose after some time
as the measuring errors would accumulate to a very high
extent. For this purpose the scanner distance data is being
used in conjunction with a map in order to calculate
corrections. We have implemented a modified method for
matching a local line segment map to a global line segment
map (see Fig.7) based on [10]. As we are using laser
scanner range data with far less uncertainty and higher
precision than the ultrasonic sensors originally used in [10]
the matching of the extracted edges is more precise.

We have measured a precision of 2cm in the best cases
and 4cm in the worst case. Still improvement is needed as
the matching process may fail when there are too many
obstructions such as chairs, other furnitures or persons
which are mobile and therefore not registered in the map.

Based on a topological graph the graph module com-
putes paths consisting of a chain of nodes which delivers
stopover positions in the motion plane from an actual to
a target node. The search algorithm is the well known
A* algorithm. In order to be more flexible the nodes
contain a boundary description of the area encompassing

Fig. 7. Repositioning with extracted edges and collision avoidance with
elastic bands



a node. This additional information allows a permanent
reassignment of the current position to the closest node
in the graph. By this fact the mobile base is enabled to
interact with the user and the events in the environment
arbitrarily and retrieve its current node in the graph in order
to be able to find a way to distant destinations whenever
needed. For a better handling of changing situations in
respect of long term obstructions and door transitions a
diversification of node types is made. We differ between
room nodes containing the above mentioned boundary
description, location nodes which contain rectangles for
describing a smaller long-term free space area and door
nodes containing additionally the coordinates of the door
axis with the turn direction for opening. This information
supplement enables the upper level to prepare and act
accordingly, should the door be closed at this node. The
detection of open or closed state can be easily done by
simple analysis of the distance image of the laser range
scanner when the platform approaches the coordinates of
the door axis. Additional edge attributes like motion speed
allow an adjustment to the potential threats of collision
at certain parts of the virtual tracks between the nodes
such as doors in a corridor. For enhancing the versatility
of the graph we intend to make it modifyable at run-time.
This will allow the cognitive level to adapt it to changing
conditions and extend it with new nodes and informations.

The path segment passed on from the graph module is
being observed by the collision avoidance by the analysis
of the scans. If obstacles occur the path will be modified
according to the elastic band approach from [9] in order
to avoid collision (see Fig.7).

If the path section is fully obstructed the collision
avoidance reports this to the graph module for temporary
disabling the current edge and replanning on the graph
level. In the case of a graph unrelated motion the collision
avoidance receives a number of support points from the
upper levels bypassing the graph module.

Finally, the spline driving executes the driving on this
potentially modified path by calculating the required speed
and radius passing them on to the platform kinematic
module which transforms them into the desired speeds
of the motor controller. For specific movements like i.e.
door opening the driving path can be set by upper levels
bypassing both the graph module as well as the collision
avoidance. Yet, the motion speed can be dynamically
adjusted in order to synchronize the platform motion with
the upper body motion.

V. CONCLUSION AND FURTHER WORK

In this paper we presented the current state of our work
in developing and integrating motor and perception com-
ponents for humanoid robots. We prestented a modular and
distributed control architecture which allow the integration
of further hardware and software components.

Further work includes the integration of five-fingered
lightweight hand [5] as well as a speech recognition
system. In addition, methods for local path modification
in order to achieve a coordinated motion of the whole

humanoid robot (platform, torso, arms and head) are ad-
dressed in the near future. For this purpose, multisensor
based methods will be investigated and implemented to
ensure a collision free motion of the whole robot in the
kitchen.

ACKNOWLEDGMENT

This work has been performed in the framework of
the german humanoid robotics program SFB 588 funded
by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft).

REFERENCES

[1] T. Asfour and R. Dillmann. Human-like Motion of a Humanoid Robot
Arm Based on Closed-Form Solution of the Inverse Kinematics Prob-
lem. The IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003), Las Vegas, USA, 2003.

[2] T. Asfour, D.N. Ly, K. Regenstein and R. Dillmann. Coordinated Task
Execution for Humanoid Robots. The 9th International Symposium
on Experimental Robotics (ISER 04), Singapore, 18-21 June 2004.

[3] K. Nickel and R. Stiefelhagen. Pointing gesture recognition based
on 3d-tracking of face, hands and head orientation. International
Conference on Multimodal Interfaces, Vancouver, Canada, 2003.

[4] D. Bechler, M. Schlosser and K.Kroschel. Acoustic 3D Speaker
Tracking for Humanoid Robots with a Microphone Arry. Proceedings
of the 3rd IEEE International Conference on Humanoid Robots
(Humanoids 2003), Karlsruhe, Germany.

[5] S. Schulz and G. Bretthauer. A Fluidic Humanoid Robot Hand. Pro-
ceedings of the second IEEE International Conference on Humanoid
Robots (Humanoids 2001), Tokyo, Japan.

[6] R. David and H. Alla. Petri Nets for Modeling of Dynamic Systems,
Automatica, vol. 30, pp. 175–202, 1994.

[7] K. Regenstein and R. Dillmann. Design of an open hardware architec-
ture for the humanoid robot ARMAR. Humanoids 2003, International
Conference on Humanoid Robots, Karlsruhe, Germany, 2003.

[8] J. J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba
and H. Inoue. Self-Collision Detection and Prevention for Humanoid
Robots, In Proc. 2002 IEEE International Conference on Robotics
and Automation (ICRA 2002), 2002

[9] S. Quinlan and O. Khatib, Elastic Bands: Connecting Path Plan-
ning and Control, In Proc. 2002 IEEE International Conference on
Robotics and Automation (ICRA 1993), 1993

[10] J. Crowley. World Modeling and Position Estimation for a Mobile
Robot Using Ultrasonic Ranging. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, Scottsdale, AZ, May
14-19, pp. 674-680, 1989.

[11] K.-U. Scholl , J. Albiez and B. Gassmann. MCA - An Expandable
Modular Controller Architecture, 3rd Real-Time Linux Workshop,
Milano, Italy, 2001

[12] ATI Industrial Automation Homepage:
http://www.ati-ia.com/sensors.htm

[13] Modular Controller Architecture (MCA)
http://mca2.sourceforge.net/

[14] Sick-Homepage: http://www.sick.de/de/products/


