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Abstract A new approach for global self-localization based on a world model and
active vision using varying density gaussian spheres is introduced. The method si-
multaneously improves and extends our previous proposed approach [1] by contem-
plating the acquired uncertainty in the perception layer. The used appearance-based
object recognition components deliver noisy percept subgraphs which are filtered
and fused into an ego-centered frame. In subsequent stages, the required vision-to-
model associations are extracted by selecting ego-percept subsets in order to prune
and match the corresponding world-model-graph. Ideally, these coupled subgraphs
hold necessary information to obtain the model-to-world transformation, i.e. the
pose of the robot. However, the estimation of such a pose is not robust due to the
uncertainties introduced while recovering euclidean metric from images and the
mapping from the camera to the ego-center. In this context, our approach models
the uncertainty of the percepts with a radial normal distribution. This setup allows
an optimization-solution in a closed-form, which not only obtains the maximal den-
sity position depicting the optimal ego-center, but it also ensures a solution even in
situations where normal spheres might not meet at all.

1 Model-Based Visual Self-Localization

The following resume of our previous approach offers a brief overview of the ele-
ments and their mechanisms involved in the vision-based self-localization, in this
way a better understanding of the improvements and extensions in the following
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content is possible. However, it is strongly suggested to see all the details of our
previous publication [1] available at http://i61www.ira.uka.de/users/gonzalez/.
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Fig. 1 The Model-Based Visual Self-Localization approach. 1) Appearance-based object recogni-
tion components. 2) Extracted percepts mapped into the ego-frame. 3) Multi-trial percepts fusion.
4) Fused ego-percepts with their corresponding world-model associations. 5) Proximity filtering for
pruning purposes upon world-model. 6) Orientation filtering. 8) Hypotheses generation-validation.
9) Geometric and statistical optimization. 10) Pose estimation.

Fig.1 shows the three spaces concerning the self-localization. The visual space
refers to the stratum of the process where the image information from the world is
stored. The world-model space is the graph-based ontologie of the world, here there
are two sublayers, the geometric (with the 3D vertices and their composition infor-
mation) and the topological layer, describing the interrelation of object components
layers. Finally the physical space where the robot is located has to be revealed by
means of the following phases.

The appearance-based object recognition components receive raw images and
deliver the type and position of the recognized elements within visual space. The
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management of this visual-spatial scanning is planned based on the geodesic ego-
sphere and the 3D field of view resulting from the stereo calibration, see Fig.3.

The extracted percepts are mapped into a static common ego-frame, in this man-
ner multiple perception-instance of the same object are fused to define a robust
percept. Once there is an ego-image, i.e. a fused-filtered set of percept, then the
matching which associates the vision-percepts with the world-model takes place by
means of two filtering stages.

The fast proximity filtering reduces the searching space by simultaneously ex-
ploiting the precomputed distance table and partitions of the graph. The remain-
ing candidates are matched against a more elaborated filtering criterion, which is
based on the relative orientation among those remaining nodes. The latter compu-
tations model the implicit effects of noise and other uncertainties. It is important to
remark that these phases are parametrically tuned to reject those model subgraph-
components or nodes which clearly diverge from the ego-image because in the fol-
lowing stage the remaining outliers will be robust and easily removed.

At this point there are few matched subgraphs from one side in the world-model
on the other side the ego-image. This would actually mean that the robot may be in
many locations at the same time. These location hypotheses need to be generated
and disambiguated bymeans of geometric and topological constrains implicit within
the same ego-image.

The proposed solution implies the main idea of the approach, i.e. the measure-
ment of each percept provides only information about the proximity between the
robot and the object in question, this defines a restriction subspace (sphere) where
the ego-center most be located in reference to the matched model object. This con-
cept is further exploited by using more from these subspaces which have to be com-
posed in a constrained geometric structure to hold the world-model composition
and percepts space instances. The latter ideas turn out to be a composition of noisy
spheres which by means of the following method could be modeled and solved.

The following sections describe the sources and nature of the uncertainties, which
are modeled and optimized by following proposed technique to find the maximal
density position.

2 Uncertainty

The critical role that the uncertainty plays in our previous approach cannot only
strongly diminish the precision of the estimated pose, but it can also menace the
existence of it by drawing away the intersection of the restriction subspaces, i.e. the
spheres might not intersect because of accumulated errors introduced in the percep-
tion layer.

In order to sagaciously manage this condition and other derived side effects, it
is crucial to reflect upon the nature of the acquired uncertainties in connection with
our localization approach. In this context, there are two remarkable sources of un-
certainty, the image-to-space and the space-to-ego uncertainties.
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2.1 Image to Space Uncertainty

The image-to-space uncertainty obtained from the appearance based vision recog-
nition process (see [1], section 2.1) starting with the pixel precision limitations (e.g.
noise, discretization, quantization, etc.) and ending with the errors-limitations of the
camera model and its calibration (e.g. radial-tangential distortion and intrinsic pa-
rameters [2]) could be modeled (according the central limit theorem[5]) as a normal
distribution where the variance is strongly related to the perceptions depth
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Fig. 2 The image-space uncertainty factors in a front-parallel configuration.

ρi = (xi−CL) · êd, (1)

i.e. distance between camera center CL and point in space xi along the stereo rig
normal vector êd , see Fig.2,

σi
∼= 1

ζ
ρ2
i , (2)

where ζ > 1 ∈ ℜ is an empirical scalar factor depending on the resolution of the
images and the vergence angle of the stereo rig.

This variancemodel arises from the following superposed facts: first, considering
only the monocular influence in each camera of the stereo rig, there the surface patch
Ai on the plane perpendicular to the optical axis of the camera (see Fig.2) imaged
into a single pixel PA grows linearly as function of the distance ρi
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Ai = 4ρi tan

(
θh
2h

)
tan

(
θv
2v

)
, (3)

where θh and θv represent the horizontal and vertical angular apertures of the
field of view, whereas h and v depict the corresponding resolution of the image.
Consequently, the stereo triangulation has an additional effect, i.e. during the es-
timation of the 3D position Mstereo(Xi) of a matched pair of points on left xLi and
right xRi images the distance ρi affects the magnitude of the disparity di, therefore
the precision of the computations, i.e. the points which are closer to the base line
have wider disparities along the epipolar lines, meanwhile those points located after
distance ρTh > f b have a very narrow disparity (falling in subpixel domain d < 1 )
which results in inaccurate depth calculations. This situation also produces a sparse
distribution of the iso-disparity [3] surfaces, meaning that the subspace contained
between this surface-strata grows as

di =
f b
ρi

, (4)

where the focal f distance and the base line size b = ||CL −CR|| play relevant
roles in the measurement precision.

Fig.2 shows the iso-disparity edges delineating the subspaces contained between
two discreet steps (pixel increment) in the disparity relation of Eq.4. In this manner,
points contained within one of these subspaces will produce same discreet disparity
when matching the corresponding containing pixels. Hence, the uncertainty ought
to be proportional to the distance contained among iso-disparity edges. These two
factors applied produce an uncertainty which grows in an amortiguated quadratic
pattern which we reflect in our model as a variance spreading in the same fashion.

2.2 Space to Ego Uncertainty

The space-to-ego uncertainty acquired while relating the pose of the percepts from
left camera frame to the ego-frame (head base frame of the humanoid robot, see
Fig.3-a) is produced due to the physical and electronic measurement inaccuracies,
which are substantially magnified by projective effects, i.e. the almost negligible
errors in the encoders and mechanical joints of the active head of the humanoid
robot are amplified proportional to the distance ρi between the ego center and the
location of the percept.

Fig.3-b shows the kinematic chain starting at xLi , which are the left camera coor-
dinates of the space point Xi. Subsequently, the transformation from the left camera
frame CL to the shoulders base T (t), passing through the eyes base H and neck
frame N(t), is given by

X́i = Mt
ego(xi), (5)

Mt
ego = [T(t)N(t)HCL]−1, (6)
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Fig. 3 The space-ego uncertainty acquisition process produced by the mapping percepts from
camera coordinates to the ego-frame. a) The whole transformation X́i = Mt

ego(Mstereo(Xi)). b) The
transformation Mt

ego = [T(t)N(t)HCL]−1.

whereMt
ego is the ego-mapping at time t. Here, the transformations T(t) and N(t)

are time depending because they are active during the scanning strategy.

3 Geometry and Uncertainty Model

Once the visual recognition components have delivered all classified percepts within
a discreet step in the scanning trajectory (a trial), these percepts are mapped into a
reference ego-frame using Eq.5 of the kinematic chain of the robot. This ego-frame
E is fixed during the scanning phase, in this fashion all percepts from different trials
are located in a static common frame, see Fig.3-b.

The unification-blending process done by the fusion phase (see [1], section 2.1.1)
simultaneously allows the rejection of those percepts which are far from being prop-
erly clustered and creates the delineation set which is later melted into a fused per-
cept.

At this point percepts are matched against the model identities based on the
techniques exposed in [1]. Next, the geometric and statistical phase which deter-
mines the position of the robot base on intersection of spheres is properly formu-
lated by introducing the following gaussian sphere and its apparatus for intersection-
optimization.
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3.1 Gaussian Spheres
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Fig. 4 The Gaussian Spheres meeting. a) Two gaussian spheres meeting Ω1∧Ω2 describing a den-
sity subspace Δ(Ω1 ∧Ω2). b) Three gaussian spheres Ωi=1,2,3 meeting in two regions depicting a
subspace Ω1 ∧Ω2 ∧Ω3. c) Detail view of one of the previous subspaces. d) Discreet approxima-
tion of the maximal density location xs. e) Detail of the implicit density space Δ(Ω1∧Ω2∧Ω3). f)
Implicit radius rx when estimating the density at position x.

The considered restriction spheres Ωi (see [1], section 2.4) are endowed with a
soft density function

f̂ (Ωi,x) | x ∈ ℜ3 �→ (0,1] ∈ ℜ, (7)

the density value decreases exponentially as a function of the distance from an
arbitrary point x to the surface of the sphere Ωi
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S(x,Xi,ri) = ||x−Xi||− ri, (8)

f̂ (Ωi,x) = e
−S(x,Xi,ri)

2

2σ2
i , (9)

this function depicts the non-normalized 1 radial normal distribution

Ň(μ := {x | ker(S(x,Xi,ri))},σ2
i ) (10)

for x to be in the surface of Ωi, i.e. the null space of S(x,Xi,ri).
Now, the density of a point x in relation with a sphere Ωi represents the non-

normalized probability for the point to belong to the surface of the sphere. As a
desired consequence the maximal density will be on the surface of the sphere itself.
In order to apply the same essential idea used to find the robot position using inter-
section of restriction spheres it is necessary to propose a mechanism to effectively
deal with these concepts.

In the following sections the restriction spheres and their conjuncted composition
properly model both uncertainties, allowing the meeting of spheres by finding the
subspace where the maximal density is located, see Fig.4.
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total accumulative density f̂c(x) = ∑n

i f̂ (Ωi,x) allows a better visualization of the composition of
its product counterpart f̂t(x), see also 6. c) Density contours with seeds and their convergence by
means of gradient ascendant methods.

1 By the factor 1
σ
√
2π
, because the proposed function models only the density.
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This could be understood as an isotropic dilatation or contraction of each sphere
in order to meet at maximal density of the total density function f̂t(x)−→ (0,1]∈ ℜ

f̂t (x) =
n

∏
i
f̂ (Ωi,x). (11)

Due to the geometric structure composed by n spheres it is possible to foreseen
the amount of peaks and the space regionsWs where the density peaks are located.
Therefore, it is feasible to use state of art gradient ascendant methods [4] to con-
verge to the modes using multiple seed strategically located based on the spheres
centers and intersection zones, see Fig.5-c. Finally, the seed with maximal density
represents the solution position xs

xs = argmaxx∈K f̂t (x), (12)

however, there are many issues of this shortcoming solution. The iterative solu-
tion has a limited precision by the parameter used to stop the shifting of the seeds.
In addition, the location and spreading of the seeds could have a tendency to pro-
duce undesired phenomena as oscillation, under or oversampling (bandwidth-kernel
selection issue) and all other disadvantages that iterative methods present.
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The optimization assignment expressed by Eq.12 could be properly solved in a
convenient closed-form. In order to address the solution xs it is necessary to observe
the configuration within a more propitious space, which simultaneously allows an
advantageous representation of the geometrical constrains and enables an efficient
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management of the density, i.e. incorporating the measurements according their un-
certainty and relevancy while avoiding density decay.

3.2 Radial Space

The key to attain a suitable representation of the latter optimization resides in the
exponent of the Eq.9. There, the directed distance from a point x to the closest one
on the surface of the sphere is expressed by the Eq.8. Even more, when considering
the total density function (see Eq.11) it unfolds the complexity by expressing the
total density as a tensor product.

The inherent nature of the problem lies in the radial domain, i.e. the expression
S(x,Xi, ri)2 is actually the square magnitude of the difference between the radius ri
and the implicit defined radius rx between the center of the spheres Xi and the point
in question x, see Fig.4-f. Hence, the optimization configuration cannot only be
better expressed in radial terms, but also the geometrical constraints restricting the
relative positions of the spheres could be naturally uncluttered as follows.

3.3 Restriction Lines

Consider the case of two spheres Ω1 and Ω2, see Fig.7-a. Here, their radii and the
distance between their centers δ1,2 = ||X1−X2|| allow the formulation of the following
geometric restrictions, which ensure the intersection of the spheres in at least a sin-
gle point Pχ . This restriction is expressed as the inequation line Lχ , which describes
the radial configuration subspace represented by pairs of the form Pχ = [r1,r2]T , the
intersection of spheres Ω1∧Ω2.

Notice that the inequality line divides the configuration space into two regions,
the half space partially holding the restriction imposed by the inequation line Lχ ,
however it still has configurations which produce empty intersection of spheres,
e.g. any configuration holding r2 ≥ δ1,2 + r1. In order to prevent these degenerated
configurations there are two additional restriction inequation lines, which could be
unveiled by following a similar pattern.

In the same fashion, Fig.7-b shows the case where the minimal contact point Pβ
occurs, subject to r1 ≥ δ1,2 + r2. In this configuration the sphere Ω1 fully contains the
sphere Ω2 and their surfaces intersect solely at Pβ . Once again, in order to ensure
at least this contact point, the fluctuation of the radii of both spheres is restricted
by a linear relation comprehensibly expressed by the inequality line Lβ . The latter
restriction actually happens in a symmetric manner (by interchanging the roles from
Ω1 with Ω2) resulting in a third restriction, i.e. the inequality line Lα , see Fig.7-c,d.

As a result, the configuration space is delineated into four regions Kα , Kβ , Kχ
and Kmeet all open except Kχ . Only those configurations within the subspace Kmeet

represent non-empty intersections of the spheres, e.g. the point xcon f = [r
′
1,r

′
2]
T ∈
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Kmeet , see Fig.7-d. This representation implicates that those points on the edge
of Kmeet depict intersections of spheres in a single point (circle with null radius),
whereas elements within Kmeet represent intersection depicting a circle with non
zero radius.

Latter representation soundly amalgamates the distance among centers of the
spheres with their radii producing a robust and general criteria to establish intersec-
tion guarantee, see Fig.7-d.

3.4 Restriction Hyperplanes

The previous derivation of the restriction lines was achieved by considering only the
case involving two spheres, however, it is possible to extend these restrictions to n
spheres.

Formally, this affirmation is theoretically supported by representing the n spheres
radial configuration space Sn as the Hilbert space Cn, where each dimension de-
picts the radius of one sphere, i.e. an element xcon f ∈ Sn of the n-dimensional radial
configuration space can be uniquely specified by its coordinates with respect to an
orthonormal basis vectors êi ∈ Sn | i ∈ {1, · · · ,n} ⊂ Z are perpendicular to each
other because the radius of each sphere is independent from the rest. In this manner,
the previous restriction lines could be perpendicularly extruded in n−2 dimensions
creating the restriction hyperplanes Φ (i, j)

α . Here again, each hyperplane divides the
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space in two subspaces, i.e. configurations within the region opposite to the normal
vector VLα represent non intersecting spheres, see Fig.8.

Even more, the set of hyperplanes expressed in their hessian could be used to
compose a matrix inequality

Ax≤ b, (13)

where A is a m× n matrix, with m bounding half-spaces (normal vectors of the
hyperplanes) and b represents a m×1 column vector formed by stacking the Hessen
distances of the hyperplanes, i.e. an open polytope, see Fig. 8.
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Fig. 8 The radial density space Sb3 containing the open polytope which delineates the subspace
Kmeet . Observe the transformation-optimization vector Vopt which implies an isotropic variation in
the underlying density domain while creating a general dilatation within the implicit radial domain.

Consider the case where n = 3, three spheres implying an open polyhedron,
within this radial space each line L(i, j)

α , L(i, j)
β and L(i, j)

χ is extruded in the comple-

mentary dimension creating restriction planes given by Φ (i, j)
α . Next, the face cells,

ridges and vertices of the polytope are found using our rather simple but fast imple-
mentation for vertex enumeration[6], see Fig.8.
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At this stage, it could be conveniently established whether the current configu-
ration is a valid or not, in other words, determine if the point xcon f belongs to the
polytope. This assertion is formally given by Axcon f ≤ b. In case this assertion is
held, then there is no need to go through the following optimization phase because
the spheres are meeting on their solid surface. Thus, it results into a maximal density,
i.e. f̂ (xcon f ) = 1.

The opposite situations represent those degenerated configurations resulting from
noise measurements and previously discussed errors, e.g. the point xcon f represents
an invalid configuration, out side of the polytope, see Fig.8.

The target solution for the latter cases necessarily implies a decay in the density,
because at least one of the vector components has to be modify for the point xcon f
in order to become a valid configuration xcon f . This offset signifies a dilatation (or
relative contraction) of the sphere(s) depending on the direction of the displacement

xcon f = xcon f +Vopt, (14)

which transforms the degenerated configuration into a valid one, see Fig.8.
Here, the optimal criterion to calculate the transformation Vopt is to accomplish

the minimal length offset vector Vopt := [vr1 , ...,vrn], i.e. retaining as much density as
possible by eluding degradation of the spheres (reducing the needed radial variance)
S(xcon f +Vopt ,Xi, ri) on Eq.9.

The geometric intuitive way of finding such a vector is by seeking the closest
point from xcon f on the cells or ridges of the polytope, which could be efficiently
computed by perpendicularly projecting the point xcon f to each hyperplane

x(i, j)
con f

= xcon f − (V (i, j)
α · xcon f )V (i, j)

α , (15)

and selecting the closest one from those holding the assertion given by Eq.13.
Although this technique is computational efficient and geometric effective the

outcoming solution is no the optimal one, because within this space only the ab-
solute directed distance is considered, no contribution effects of different variances
are assessed, which does not necessarily mean the minimal density decay.

This limitation could be defeated by considering a homothety transformation
H(Sn) (a variance normalization) of the radial configuration space inspired on the
essential concept of theMahalanobis distance[5] as follows.

The spatial density function of a gaussian sphere Ωi given by Eq.9 could be
conveniently reformulated in the radial domain as

f̂ (Ωi,x) = e
− 1

2

(
rx
σi
− ri

σi

)2

, (16)

in such a way the variance of the endowed normal distribution scales the implicit
defined radius rx and the mean radius ri of the sphere Ωi by a 1

σi
factor. This nor-

malization mapping could be generalized for the whole radial configuration space
Sn as

H = diag
[
σ−1
1 ,σ−1

2 , . . . ,σ−1
n

]
. (17)
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This matrix actually represents the inverse covariance matrix Σ−1 of the total
density function given by Eq.18. This could be easily visualized by the alternative
expression2

f̂t(x) = e
− 1

2 ∑n
i=1

( ||x−Xi||
σi

− ri
σi

)2

. (18)

Based on this expression and taking into account the uncorrelated radial distri-
butions, it is clear that the underlying covariance matrixH−1 = Σ has null elements
outside its trace. In this fashion, the proposed normalization Sdn =H(Sn) could take
place by applying the matrix H as an operator over the orthonormal vector bases of
Sn as

éi = Hêi. (19)

The euclideanmetric within this resulting space is uniformly isomorphic with the
density space, i.e. displacements of the same length arising from the same position
imply equal density decay in all directions. In our implementation this normalization
takes place before the polytope has been computed, reflecting the effects within the
affine3 strata while computing the optimal points in Eq.15, see Fig.8.

The application of the previous methods within the normalized radial config-
uration space Sdn ensures not only the optimal solution (minimal decay), but it
also vantages from the available certainty provided from those spheres with smaller
variance (higher reliable percepts) by introducing smaller displacements in the cor-
responding dimension of the displacement vectorVopt ∈ Sdn.

In other words, the spheres which have a wider variance can easily expand or
contract their surfaces than those with smaller ones, in order to obtain the highest
possible density at the meeting operation. The method delivers the optimal tradeoff-
fusion while performing the management of the modeled uncertainty.

3.5 Duality and Uniqueness

In case the latter method has taken place in Sd3 (by considering three spheres) ob-
taining the optimal configuration xcon f ∈ Sd3, there is still a duality to solve while
back mapping this configuration into the physical euclidean space. This issue is
solved straightforward by computing the pair of points solution

J∧3
i=1

=
3∧

i=1

Ωi(σi(xcon f · êi),Xi), (20)

and verifying against the valid subspace for each of the hypotheses positions, i.e.
ratifying which of the points is inside the room. In case the both solutions lie within

2 By rewriting the exponent as a vector column and arranging in a standard form xtΣ−1x.
3 In the Hessen normal form of the hyperplanes.
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the valid subspace the simple cross match against the location of other percepts will
robustly disambiguate the solution.

It is possible to obtain an unique solution by using four spheres for the optimiza-
tion task, i.e. to represent the setup within Sd4. In this way xcon f ∈ Sd4 could be
again mapped back into the physical euclidean space by means of meet operator as

P∧4
i=1

=
4∧

i=1

Ωi(σi(xcon f · êi),Xi), (21)

unveiling the position of the robot. In our approach the vertex enumeration in
higher dimensions (n > 3) is still under development, thus experimental results are
optimized in Sd3.

4 Conclusion

This approach extends and improves our previousmethods to solve the model-based
self visual localization using conformal geometric algebra and gaussian spheres.
The proposed method translates the statistical optimization problem of finding the
maximal density location for the robot into a radial density space which allows a
very convenient description of the problem. Within this domain it is possible not
only to draw the geometric restrictions which ensure the intersection of spheres, but
it also enable us to find the optimal fusion and tradeoff of the available information
provided by the precepts by regarding the provided information of each landmark
according its uncertainty.

Fig. 9 The scanning sequence executing the self-localization, the results from the handler recog-
nition component are highlited.

We have also discussed and modeled the uncertainty sources including all phe-
nomena from the image processing up to encoder in the robotic joints. The timing of
the whole approach could be seen in previous approachwith the exception to the ver-
tex enumeration which take approximately 15−50 ms depending on the configura-
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tion. The overall precision available at the moment4 is±2.75 cm by comparing with
the measurement of the distance between the ego center and the origin of the univer-
sal coordinate system, see Fig.9. However, the experimental results are not complete
because the vertex enumeration under development will allow us to compare the ef-
fects of involving more than three the orientation. The upcoming extensive result
and videos will be made available at http://i61www.ira.uka.de/users/gonzalez/.

There are still open question about the performance, quality and timing of using
more spheres and subpixel precision methods like lines instead of single pairs of
matched points. In particular the role of line segments in the class recognition will
a deep impact. This features can be extracted robustly and will be tested.
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